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INTRODUCTION

Fracture mechanics suggests that two cracks of similar size, in the same material, should
respond in a similar fashion if they are subject to the same stress intensity, K. If one crack grows
as a result of a given applied stress the other crack should also, irrespective of the size or shape
of the body surrounding the crack. The work presented in this report combines the key
parameters of stress intensity, von Mises combined stress, and remaining ligament into a
"normalized" toughness. Then this toughness is compared as a function of normalized crack
length, a/w, for pressure vessels with wall ratios of 1.75, 2.00, and 2.25, and for the compact
tension, C(T), single-edge notched bend, SEN(B), and middle tension, M(T), specimens. The
various geometries and loading utilized can be observed in Figure 1. Due to size limitations, the
specimens for the study were taken in the LR orientation. Prior experience with this material,
heat treatment, and processing has shown little directionality effect. Although this is not
typically the crack plane of primary interest in pressurized vessels, it does provide enough
information for proving the theory presented. Note in Figure 1 the significantly different stress
states that are induced as a result of the applied loading. In this figure the stresses that result in
self-similar cracking, oy, and off-axis cracking, oy, are defined for each of the geometries being
studied. No bending is present in either the pressure vessel or the M(T) specimen, and the stress
induced is a result of only normal loading. However, for the SEN(B) specimen, the stresses are
the result of only bending loads; and for the C(T) specimen, the stresses are the result of a
combination of bending and normal loading. In all cases, the through-thickness stress, o, was
assumed to be negligible and was omitted. The main focus of this study is to model actual final
failure conditions of pressure vessels. Underwood et al. (ref 1) have provided a summary of
prior final failure events for several pressure vessels with different wall ratios. These results can

be seen in Table 1. The results are the averages for deep surface cracks emanating from the bore
of the pressure vessel.
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Figure 1. Ligament stresses for specimens investigated.




Table 1. Average Yield-Before-Break Failure Conditions
of Pressure Vessels with a Surface Crack at the Inner Radius

Wall Yield Fracture (w—a), alw
Ratio Strength | Toughness
(MPa) | (MPam'? (mm)
1.90 1000 164 7 0.83
2.25 1090 187 8 0.89
1.79 1220 170 9 0.85
Average 8 0.86

The average remaining ligament for the deep-cracked pressure vessels was 8-mm (at
failure), with considerable plastic yielding accompanying the failure. The plan of this
investigation was to use this 8-mm remaining ligament in various fracture specimen
configurations with a range of crack depths in order to mode! the final failure behavior of thick-
walled pressure vessels. The various specimen geometries, sizes, and related crack lengths were
then set according to Table 2.

Table 2. Specimen Size and Configuration

Geometry w (W-@)nominat a/w
(mm) (mm)
C(T), SEN(B), M(T) 10 8 0.200
' 15 8 0.467
20 8 0.600
40 8 0.800

Note that since the remaining ligament was previously set at a nominal 8-mm, the tests
involved short crack lengths in the small specimens, moderate crack len gths in the mid-sized
specimens, and large crack lengths in the larger specimens.

ANALYSIS

The following section describes the analysis for predicting the "normalized" toughness of
each of the geometries investigated.

Pressure Vessel

Boundary collocation K results developed by Bowie and Freese (ref 2) and further
improved by Andrasic and Parker (ref 3) provide a wide array of stress intensity solutions as a
function of wall ratio for an internally pressurized cylinder with a crack emanating from the bore
of the pressure vessel. These results fall short, however, because neither fits the solutions to the
deep-crack limit, which is of great interest for predicting final failure of thick-walled pressure
vessels, especially in this case where the average a/w is 0.86 at failure. Underwood and
Witherell (ref 4) have added to the original work by Bowie and Freese to include the deep-crack
limit solution, as provided in Reference 5. The K solution for a pressurized vessel (ref 4)is
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where a is the crack length, w is the wall thickness (r,-7;), p is the internal pressure, W is the wall

ratio (r2/r;), and C;...C, are the unique coefficients for each wall ratio investigated. Through
some simple algebraic manipulations, one can rewrite the expression as

K = pfyydw—a 2)

where

a
foy =3.97C,y V/w

Z N

Using equation (2), along with expressions for oy, the stress component that induces off-
axis cracking, and o, the stress component that induces self-similar cracking, in Figure 1, we
can write the normalized K expressions in terms of o, and o, as follows:

K
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Compact Tension Specimen

The compact tension specimen is analyzed in a fashion similar to that presented above.
In this case, the K expression as defined in E399 is

Ko P_ | 6

where p is the pin load, B is the specimen thickness, w is the width of the specimen, and f. is
defined as
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which is valid on the region 0.2 < a/w < 1. Now, using equation (6), along with the expression
for o, and oy for the compact tension specimen as defined in Figure 1, we can write the
normalized K expressions as
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Single-Edge Notch Bend Specimen

The K expression, as defined in E399, for the single-edge notched beam is

S
K =B—";3—,2—f3 (10)

where p, B, and w are previously defined, S is the span of the pin supports, usually 4w, and fzis

defined as
(3\/3/;11.99—%Xl—%X2.15—3.93aw+2.7a%2))
f5= 2(“2% Xl—%)m

which is valid on the region 0 < a/w < 1. Using equation (10), along with the expression for oy

and oy for the single-edge notched beam specimen as defined in Figure 1, we can write the
normalized K expressions as

(11)
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and
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Middle Tension Specimen

The K expression, as defined in Reference 4, for the middle tension specimen is
K==Ly, (14)
2Bw

where p, B, and w and a are previously defined, and fj,is defined as

=1—O.5“W+0.326(%v f .
JL—“W |

which is valid from 0 < a/w < 1. Using equation (14) along with the expression for o, and o, for
the middle tension specimen as defined in Figure 1, we can write the normalized K expressions
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Summary of Analysis

The normalized K expressions for the geometries presented are plotted in Figure 2 for the
off-axis stresses, (we will hereafter set K, = K/O(w-a )1/2) and in Figure 3 for the self-similar
stresses we will hereafter set Ko, = K/oy(w-a )1/2). In both figures, three wall ratios were

analyzed, W= 1.75, 2.00, and 2.25. The next step is to combine the normalized K with the von
Mises equivalent stress for yielding

K 2 . o2
—— = /K +K2-K_K 18
oo VKt Ks ~KaK, e




T 7

- C(T)
= SEN(B)

-5 \\\\N - M(T)
10 ~PV W=1.75
—+—PV W=2.00
15 \\\\ \ =PV W=2.25

alw

K/o',(w-a)m

Figure 2. Normalized off-axis stress intensity for various configurations.
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Figure 3. Normalized self-similar stress intensity for various configurations.

These results, for the SEN(B), C(T), M(T), and three different wall ratio pressure vessels
are graphically presented in Figure 4. The results suggest that for a/w of 0.2, the C(T) geometry
closely approximates the normalized toughness of all three wall ratio pressure vessels, whereas
the SEN(B) and M(T) specimens under-predict the toughness. At a moderate length a/w of 0.5,
all of the specimens significantly under-predict the toughness of the pressure vessels. Also, at a
large a/w of 0.85 (approximately the same as the a/w measured in Reference 1), the M(T)
specimen toughness is approaching that of the pressure vessels, and the SEN(B) and C(T)
specimens are less than 50% of that predicted for the M(T) and the pressure vessels.
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Figure 4. Normalized von Mises stress intensity for various configurations.

Note that in the limit as a/w tends toward zero, the M(T) and SEN(B) tend toward the
same limit as the pressure vessels. This condition is interesting, but not of much interest here.
For the deep-crack limit, which is of primary interest, the M(T) specimen tends toward the same
limits as the pressure vessels, whereas the C(T) and SEN(B) do not. This similarity between the
pressure vessel and M(T) specimen may be related to how a pressure vessel and the M(T)
specimen respond to applied pressure loading (see Figure 5). The case of a pressure vessel with
cracks emanating from the bore surface, with pressure both in the bore and in the cracks, is
analogous to the same pressure vessel with an external applied pressure. This condition is
analogous to the M(T) specimen with an external applied pressure. In the deep-crack limit, all
three scenarios sketched in Figure 5 are identical.
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Figure 5. Analogy between internally pressurized cylinder and remotely loaded hole in plate.




EXPERIMENTAL RESULTS

Experiments were conducted on A723 Grade 2 pressure vessel quality steel, to validate
the analysis discussed here. Properties of the steel appear in Table 3.

Table 3. Mechanical Properties of A723 Grade 2 Pressure Vessel Quality Steel

Yield Ultimate | Reduction- | Elongation | Charpy Young's
Strength | Tensile in-Area Impact | Modulus
Strength Energy
(MPa) (MPa) (%) (%) (J,-40°C) | (GPa)
1125 1235 54 15 57 205

All of the specimens were machined from the same pressure vessel so as to eliminate any
slight anomalies that might exist.

Compact Tension Specimen and Single-Edge Notch Beam Specimen

Testing was conducted on these specimens (C(T) and SEN(B)) according to ASTM Test
Method for J-Integral Characterization of Fracture Toughness (E1737). This test method was
chosen because it allows for an accurate measure of elastic-plastic toughness at any point, for a
continuous measure of load and crack extension, and for results that can easily be converted at
any point by the well-known equation

2 (19)

where E is the elastic modulus, v is Poisson's Ratio (v = 0.3), and J; is the elastic-plastic
toughness at the point of interest.

The compliance unloading method for determining crack extension was utilized, and an
accurate real time measure of J, load and crack extension was obtained. This information will be

useful for comparing these results to the M(T) specimen.

Middle Tension Specimen

Since there is no method available for directly measuring the J-integral for the M(T)
specimen, an alternate method for measuring the toughness of this geometry was sought.
Original work by Rice et al. (ref 6), which was later modified and refined by Ernst et al. (ref 7) to
accommodate the elastic and plastic 1] factor, defines the J-integral for an internally notched
plate in tension as
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where G is thé elastic or Griffith energy, which is defined as

Kz(l-vz)
E

G= Q1)

and the second term is the nonlinear portion, or plastic energy. This equation allows for an
accurate representation of the elastic-plastic toughness to be measured from a single load-

displacement curve at any point of interest along the curve. Equation (19) is then utilized to
convert to K.

Summary of Experimental Results

Results from the tests are clearly displayed in Figure 6. The K results in the figure were
taken after 0.075-mm of crack extension. For the SEN(B) and C(T) specimens, this point was
easily established because the compliance unloading procedure gave an accurate representation
of Aa. Since no such record was available for the M(T) specimen, a simple offset rule was
employed. It was assumed that since the material used was identical, then the shape of the load-
displacement trace would be similar for each of the geometries. Also, since we knew the offset
that was necessary for 0.075-mm of crack extension in the SEN(B) and C(T) specimens, we
could utilize the same offset to approximate 0.075-mm of crack extension for the M(T)
specimens. There are other more accurate methods for establishing this point, however it was
not necessary in this case. Once the point was established, each of the traces was used to
measure J and convert to K at Aa = 0.075-mm. The 0.075-mm of crack extension was chosen
because it was felt that this amount of Aa could easily be monitored with the compliance
unloading technique. If the Aa were any smaller, the inaccuracies with the technique might
allow for too much variation in the analysis. Another interesting point is that the analysis is
irrespective of the absolute amount of crack growth, and the reader can easily choose a different
Aa for comparison. Note in Figure 6 the large amount of scatter, not only with the geometry, but
also with size of the specimens when plotted in terms of K.
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Figure 6. Calculated stress intensity for various configurations.

Knowing all the necessary data in equations (1), (6), (10), and (14), for the pressure
vessel, C(T), SEN(B), and M(T) specimens, respectively, and also having all the necessary
information for calculating the self-similar and off-axis stresses in Figure 1, we can easily
evaluate the normalized toughness, K/Gyp(w-a )w , for each of the geometries. These results are

displayed in Figure 7. Note the good agreement we obtain between the experimental (exp) and
theoretical predictions.
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Figure 7. Theoretical and experimental stress intensities for various configurations.
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CONCLUSIONS

 This technique can be utilized to select the best specimen configuration and crack length
for predicting the toughness of a given material and structural configuration. If the user
knows a few critical features such as the overall geometry, a/w, and the loading, an
accurate prediction of the toughness can be made for that specific application.

¢ The technique is not dependent on material properties such as yield strength, and only
considers the ratio of K to crack tip von Mises stresses and the remaining ligament. It is
cautioned that this technique has been proven to be useful for relatively high-strength
pressure vessel steel at a crack extension of 0.075-mm. Should the reader be interested in
using this technique for other materials and structural configurations, they are cautioned
to investigate which crack extension would be appropriate for their application.

e This method is general and simple, so it should be relatively easy to perform this type of
analysis on a wide variety of structural configurations and geometries, other than those
investigated here.
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WEST POINT, NY 10966-1792

U.S. ARMY AVIATION AND MISSILE COM
REDSTONE SCIENTIFIC INFO CENTER 2
ATIN: AMSAM-RD-OB-R (DOCUMENTS)
REDSTONE ARSENAL, AL 35898-5000

COMMANDER

U.S. ARMY FOREIGN SCI & TECH CENTER
ATTN: DRXST-SD 1
220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER,
BENET LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND,
AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.




